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It follows from a comparison among the three-constant Redlich-Kister, Renon-Prausnitz and 
Wilson equations that the three-constant Wilson equation fulfills best earlier defined requirements 
on the normal behaviour. Further, values of correlation parameters A 1 ,-.A 2 corresponding to dif
ferent pairs x 0 and (G 11),

0 
at constant C and related limiting activity coefficients have been 

calculated. Limits of sets of parameters yielding g;E > 0, g;E < 0 in the whole concentration 
range, an S-shaped course. of g;E(x1) as well as an extreme on the log yi(x 1) curve have been 
also established. A convex course of [82 \?1 joxil (x 1) has been proved for the case of the two-con
stant Wilson equation. 

In previous works, the applicability of the Redlich-Kister 1 (further denoted as R-K) and 
Renon-Prausnitz2 (NRTL) equations to correlations of systems exhibiting large positive devia
tions from Raoult's law3

-
5 has been investigated. The normal behaviour of these systems has 

been defined in the following manner: 

I) Curve (QJ) = o[\?1E j (2·303RT)] jox 1 is a monotonously decreasing function in the con
centration interval (0; 1), i.e. 

o(Ql) fox 1 < o. (1) 

2) A less strict condition requires that the molar excess Gibbs energy be positive in the con
centration interval (0; 1), i.e. 

g;E > 0. (2) 

From the point of view of the course of (Gll) (x1) = o2 [\llj(2·303RT) ]joxj, the following cases 
have been distinguished: 

3) Curve (GJJ) (x 1) is convex in the whole concentration range, i.e. 

cP(Gll)foxi = (GJJJJ) > o. (J) 

4) At a nonconvex course of (Gll) (x1), only one extreme (i.e. minimum) on this curve has 
been required. 

This work has been aimed at finding for the three-parameter Wilson equation6
•
7

: 

a) how it fulfills the above given requirements on the normal behaviour, b) how the 
equation reflects changes in x0 and (Gll) (x0), c) possible values of limiting activity 
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coefficients for homogeneous systems, d) its advantages and disadvantages in com
parison with the earlier discussed R- K and NRTL equations. 

THEORETICAL 

The three-parameter equation proposed by Wilson6
•
7 has been used in the form 

where A 1 , A 2 and C are empirical parameters which depend only on temperature 
and pressure. 

The ratio of activity coefficients and higher (for n > 2) derivatives of <§E/RT 
with respect to composition are given by relations 

In (y1 jy2) = 2·303(Q1) = C{ln [(x2 + A2 x1)/(x 1 + A1x2)] -

- A2/(x 2 + A2x 1) + A 1/(x 1 + A1x2)} , 

8"Q/8x ~ = (2·303t 1 
( -1)" (n - 2)! C{[l + (n - 1) A2/(x 2 + A2 x1)] • 

. [(A 2 - 1)/(x 2 + A2x 1)]" -
1 

- [1 + (n - 1) Ad(x 1 + A1xz)] . 

. [(1 - A1)/(x t + Alxz)]n-l}. 

(5) 

(6) 

For the second derivative of the Gibbs energy with respect to composition we obtain 

82('§/RT)jaxi = 2·303(G11) = (x 1x2t 1 + 

+ C{(A 2 - 1) [(1 + A2/(xz + Azxl)J /(xz + Azx 1)

- (1 - A1) [1 + A 1/(x 1 + A1xz)]/(x 1 + A1x2)} • 

Limiting activity coefficients are given by relations 

lim logy~ = L1 = C(l - In A 1 - A2)/2·303 , 
Xl-+0 

lim log y~ = L2 = C(1 -In A 2 - A1)/2·303. 
Xl -+ 1 . 

Effect of x 0 and ( GJI) (xo) 

(7) 

(8} 

(9) 

During investigating the effect of x 0 and (Gll) (x0), the following equations have 

been solved numerically 
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3582 Novak, Vonka, Suska, Matous, Pick: 

[82(~/RT)jaxt]x,=xo = 2·303(011) (xo) = !t(xo, AI, Az, c), (lo) 

[83(~/RT)jaxi]x,=xo = 0 = f 2(x 0 , A1 , A2 , C), (lOa) 

for different values of x 0 , (011) (x0) and C. The method of the solution has been 
described in an earlier work 4

• Results of the calculations for C = 1 are given in Tables 
I- IV. The results for C > 1 in a limited extent are at disposal in the Department 
of Physical Chemistry at the Institute of Chemical Technology. 

The dependence of A 2 on A1 is depicted on Fig. 1 for (011) (x0) = 0 (critical 
isotherm) and for different values of x0 and parameter C. Values of A1 and A 2 lower 
than those indicated by the respective C-curve correspond to a system which splits 
into two phases. It would have been at A1 = A 2 o:= 0 for C = 1. 

The dependence of L1 or L2 as a function of x 0 for different C is on Fig. 2 or 3, 
resp. , for (011) (x0) = 0 (solid curves) and (011) (x0) = 0·5 '{dashed curves). It is 
obvious from these figures that higher values of C yield lower values of limiting 
activity coefficients L1 and L2 at constant x 0 and (011) (x0). If we limit ourselves 

FIG.l 

Limiting Values of A1, A 2 , C Securing the 
Condition of Thermodynamic Stability for 
the Wilson Equation for Different x 0 and 
(Gll) (x0) = 0 
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FIG. 2 

Dependence of the Logarithm of the Activity 
Coefficient of the First Component on x 0 

and C 
--- -·------ (Gll) (x0 ) = 0, - ---- (Gll) (x0 ) 

= 0·5. 
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TABLE l 

Dependence of the Parameters of the Wilson Equation and Limiting Activity Coefficients on 
(Gil) (x0) for x 0 = 0·1, 0·15 and 0·2 

(Gil) (x0 ) Al Az Ll L2 

x 0 = 0·1 

1·00 0·00316 1·513 2·252 0·253 
0·90 0·00476 1-423 2·135 0·278 
0·80 0·00586 1·318 2·093 0·312 
0·75 0·00622 1·266 2·090 0·329 
0·70 0·00650 1·201 2·093 0·348 
0·60 0·00684 1·111 2·115 0·386 
0·50 0·00696 0·991 2·155 0·432 
0-40 0·00687 0·894 2·210 0·482 
0·30 0·00642 0·749 2·299 0·557 
0·25 0·00611 0·678 2·352 0·602 
0·20 0·00567 0·598 2·420 0·654 
0·10 0·00430 0·412 2·623 0·827 
0·05 0·00334 0·313 2·772 0·962 

x 0 = 0·15 

1·00 0·0108 1-492 1·751 0·255 
0·90 0·0136 1·389 1·697 0·286 
0·80 0·0155 1·282 1·686 0·319 
0·75 0·01 62 1·229 1·690 0·337 
0·70 0·0167 1-175 1·700 0·357 
0·60 0·0173 1·063 1·733 0-400 

0·50 0·0174 0·950 1·782 0·449 

0-40 0·0168 0·828 1·849 0·508 

0·30 0·0156 0·699 1·938 0·583 

0·25 0·0147 0·628 1·994 0·629 

0·20 0·0135 0·553 2·065 0·684 

0·10 0·0103 0·375 2·265 0·855 

0·05 0·0074 0·259 2·456 1·020 

x 0 = 0·2 

1·00 0·0251 1·461 1·398 0·258 

0·90 0·0295 1·348 1-380 0·292 

0·80 0·0323 1·235 1·387 0·328 

0·75 0·0336 1·178 1·399 0·348 

0·70 0·0341 1·122 1·414 0·369 

0·60 0·0346 1·007 1·456 0·416 
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3584 Novak, Vonka, Suska, Matous, Pick: 

TABLE I 

(Continued) 

(G11)(x0 ) At Az Ll L2 

0·50 0·0342 0·892 1·513 0·469 
0·40 0·0326 0·771 1·585 0·532 
0·30 0·0298 0·645 1·679 0·612 
0·25 0·0279 0·578 1·738 0·660 
0·20 0·0254 0·505 1·809 0·719 
0·10 0·0187 0·340 2·015 0·893 
0·05 0·0134 0·233 2·205 1·060 

to C = 1, then the highest values of L1 and L2 in a homogeneous system may ap
proach infinity at (Gll) (x0) = 0. Even at C > 1, the Wilson equation enables to 
reach higher Ll ,values for homogeneous systems in comparison with the R- K 
and NRTL equations. E.g. for C = 1·1 or C = 1·2 (x0 = 0·1; (Gll) (x0) == 0) it fol
lows from Fig. 2 or 3: L1 = 1·91, L2 = 0·62 or L1 = 1·73, L2 = 0·5, resp. On the 
other hand the N RTL equation yields L1 = 1·5, L2 = 0·65 at the same conditions 
and at an optimum value r:x. = 0·6. The R- K three parameter equation fails com
pletely at these conditions. 

Conditions for a Monotonous Course of(Q1) and an S-Shaped Course ojC§E 

The monotonous course of ( Q 1) is closely related to the existence of an extreme on cur
ve (Ql) (x 1) or Yi(x 1), resp. Contradictory or even erroneous conclusions in this re
spect are found in literature and therefore we will analyze Eq. ( 4) in detail. Let us 
investigate the limiting case, i.e. 

o(Q1)foxl = o. (11) 

A small rearrangement ofEq. (6) yields 

where 
r:x.xi + f3x 1 + y = 0, (12) 

r:x. = 1 - 2(A 1 + A2 ) + (A 1 + A2 )
2 + 2A 1A2 [1 - (A1 + A 2) + A1A2/2], 

f3 = -1 + 4A 1 - 2Af + A 1A2 [ -4 + 2(A 1 + A2 ) - A 1A2 ], 

y = Ai(A~ + 1 - 2jA 1). 
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Correlations of Strongly Nonideal Systems. I. 3585 

During solving Eq. (12), the following cases may occur: A. Eq. (12) has two solutions 
for x 1 E (0, 1). As it is shown in Appendix 1, this case is excluded for the Wilson 
equation regardless of the value of parameter C. This case would correspond to three 
extremes on curve ~E(x 1 ). B. The equation has one solution for x1 e (0, 1). One 
inflexion point is on curve ~E(x 1) at this composition and the course need not obey 
condition ( 2). Eq. ( 12) may also hold in the case of a zero discriminant 

D=[P-4txy=O. (13) 

This case, however, corresponds to an inflexion point with the first derivative equal 
to zero and it may be inferred from Eq. (13) that this is satisfied for 

A2 = 1jA1 (l4a) 

(A 2)~,~ 1 = [A 1(3- 2A 1) ± 2(A 1 - 1) J A1(A 1 - 1)] [A 1(4- 3A 1)]-
1

• (14b) 
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FIG. 3 

Dependence of the Logarithm of the Activity 
Coefficient of the Second Component on x0 

and C 
..... (Gll) (x0) = 0, --- -- (Gil) (x0 

= 0·5. 
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FIG. 4 

Sets of Parameters Satisfying Conditions 
1 ~E > 0 and o(Ql)joxl < 0, possibly 

~E < 0 and o(Q1)jox1 > 0 in the whole 
concentration range 2 set of parameters 
A 1, A 2 displaying an extreme on the curve 
(QI) (x1), 3 set of parameters yielding an 
S-shaped course of ~E(x1 ). 
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TABLE II 

Dependence of the Parameters of the Wilson Equation and Limiting Activity Coefficients on 
(Gil) (x0 ) for x 0 = 0·25, 0·3 and 0·35 

(Gil) (x0 ) Al . A2 L1 L2 

x 0 = 0·25 

1·00 0·0500 1·410 1·122 0·263 
0·90 0·0558 1·288 1·128 0·300 
0·80 0·0594 1·170 1·152 0·340 
0·75 0·0605 1·111 1·169 0·362 
0·70 0·0611 1·053 1·190 0·385 
0·60 0·0611 0·938 1·240 0·435 
0·50 0·0592 0·823 1·304 0·493 
0·40 0·0556 0·707 1·381 0·561 
0·30 0·0500 0·586 1·480 0·645 
0·25 0·0464 0·522 1·541 0·696 
0·20 0·0420 0·456 1·613 0·757 
0·10 0·0303 0·305 1·821 0·937 
0·05 0·0214 0·207 2·010 1·112 

x 0 = 0·3 

1·00 0·091 1·331 0·898 0·270 
0·90 0·097 1·204 0·923 0·311 
0·80 0·100 1·083 0·960 0·356 
0·75 0·101 1·024 0·983 0·380 
0·70 0·101 0·967 1·008 0·405 
0·60 0·099 0·855 1·066 0·459 
0·50 0·095 0·744 1·135 0·521 
0 ·40 0·087 0·635 1·21 8 0·594 
0·30 0·077 0·523 1-320 0·682 
0·25 0·079 0-465 1·362 0·736 
0·20 0·064 0 ·404 1·454 0·800 
0·10 0·045 0·268 1·665 0·986 
0·05 0·032 0·182 1·856 1·160 

x 0 = 0·35 

1·00 0·155 1·214 0·715 0·282 
0·90 0·161 1·088 0·755 0·388 
0·80 0·162 0·971 0·803 0·377 
0·75 0·161 0·915 0·830 0·403 
0·70 0·159 0·861 0·859 0·430 
0·60 0·152 0·757 0·923 0·489 
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TABLE II 

(Continued) 

0·50 
0·40 
0·30 
0·25 
0·20 
0·10 
0·05 

0·142 
0·129 
0·112 
0·102 
0·091 
0·063 
0·044 

3587 

0·656 0·996 0·555 
0·557 1·082 0·632 
0·457 1·187 0·725 
0·406 1·249 0·781 
0·352 1·323 0·847 
0·233 1·534 1·040 
0·158 1·724 1·217 

C. The equation has no solution for x 1 E (0, 1) and then curve (Q1) (x1) is either 
monotonously decreasing and <§E(x1) > 1 or it is monotonously increasing and 
<§E(x1) < 0. 

Let us find conditions at which the extreme may appear at concentration limits, 
i.e. at x 1 = 0 and x 1 = l. If the solution should yield x 1 = 0, it must hold 

(15) 

and for A1 =I= 0 we obtain 

(16) 

This dependence is on Fig. 4 denoted as a. 
If the solution is to yield x 1 = 1, it must hold on the contrary 

rx + f3 + }' = -2A 2 + A~ + AiA~ = 0 (17) 

and consequently 
A 2 = 2/(1 + Ai). (18) 

This dependence is denoted as b in Fig. 4 and it is also found as the dashed curve 
in Fig. 1. The hatched area on Fig. 4 between curves a and b represents the set 
of parameters A 1 , A2 (regardless of the value of parameter C) yielding an extreme 
on curve ( Q 1) (x 1) or an extreme on activity coefficient curves. 

As it has been stated earlier, Eq. (12) has only one solution for x 1 E (0, 1) and, 
consequently, curve <§E(x1) has only one inflexion point. The S-shaped course of 
<§E(x1) (with the consequent change in the sign of <§E) may occur only for opposite 
signs at logarithms of limiting activity coefficients. Let us again investigate the cases 
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for which the limiting values of the activity coefficients equal unity. We obtain for 
this case from Eqs (8) and (9) (again regardless of the value of parameter C) 

A 2 = 1- In A1 , (19) 

· A 2 = exp (1 - A1). 

TABLE III 

Dependence of the Parameters of the Wilson Equation and Limiting Activity Coefficients on 
(Gil) (x0) for x 0 = 0·4, 0·45 and 0·5 

(Gll) (x0) Al A2 LI L2 

x0 = 0·4 

1·00 0·256 1·051 0·370 0·301 
0·90 0·255 0·937 0·620 0·352 
0·80 0·249 0·833 0·676 0·405 
0·75 0·244 0·784 0·706 0·433 
0·70 0·238 0·737 0·738 0·463 
0·60 0 ·222 0·647 0·805 0·526 
0·50 0·203 0·561 0·882 0·597 
0·40 0 ·181 0·465 0·970 0·678 
0·30 0·154 0·391 1·075 0·775 
0·25 0·139 0·347 1·138 0·833 
0·20 0·123 0·301 1·212 0·902 
0·10 0·084 0·199 1·422 1·098 
0·05 0·058 0·135 1·611 1·279 

x0 = 0·45 

1·00 0·406 0·841 0·459 0·332 
0·90 0·389 0·755 0·516 0·387 
0·80 0·367 0·675 0·576 0·445 
0·75 0·354 0·638 0·608 0·475 
0·70 0·341 0·601 0·641 0·507 
0·60 0·311 0·531 0·710 0·574 
0·50 0·279 0·462 0·788 0·648 
0·40 0·244 0·394 0·876 0·732 
0·30 0·205 0·325 0·981 0·883 
0·25 0·184 0·289 1·044 0·894 
0·20 0 ·161 0·251 1·117 0·964 
0·10 0·109 0·166 1-325 1·166 
0·05 0·074 0·113 1·513 1·349 
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TABLE IV 

Dependence of the Parameters of the Wilson Equation and Limiting Activity Coefficients on 
(Gil) (x0 ) for x 0 = 0·5 

(Gll)(x0) Al = Az L1 = L2 (Gll) (x0) AI = A2 L1 = L2 

1·00 0·611 0·383 0-40 0·316 0·797 
0·90 0·562 0-440 0·30 0·262 0·902 
0·80 0·513 0·500 0·25 0·234 0·963 
0·75 0·489 0·532 0·20 0·204 1·035 
0·70 0·465 0·565 0·10 0·136 1·241 
0·60 0·416 0·634 0·05 0·093 1·426 
0·50 0·351 0·715 

These dependences are denoted as c and d in Fig. 4. Curve d is also on Fig. 1. The 
hatched area between both curves represents the set of parameters corresponding 
to the S-shaped course of ~E(x 1 ). 

A more concrete representation of the course of~E or (Ql) resulting from the three-

L2 

FIG. 5 

Sets of Limiting Activity Coefficients Yielding 
Courses Defined in the Caption to Fig. 4 

-1 L2 

FIG. 6 

Values of Ll and L2 corresponding to pairs 
A1,A2 forC=1 
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-parameter Wilson equation may be obtained from Fig. 5. This figure contains de
pendences from Fig. 4 transformed into variables L1 and L2. 

Fig. 5 reveals some limitations of the Wilson equation pointed at by Orye and 
Prausnitz8

. The Wilson equation cannot correlate correctly systems exhibiting an ex
treme on curve (Q1) (x1) or 'l'i(x1) as long as both limiting activity coefficients are 
greater than 1·359 [ = exp (1 -In 2).]. Once, however, one activity coefficient is 
lower than this value (and simultaneously greater than unity), the second one may be 
arbitrarily large. For activity coefficients lower than unity may the extreme on curve 
'l'i(x1) occur theoretically at arbitrarily low activity coefficients. 

On turning back to strongly nonideal systems, the extreme on curve (Q1) (x 1) 

may according to the Wilson equation appear, as it is obvious from Fig. 1, only 
for highly unsymmetrical systems and it is more probable at higher values of ( G 11 )( x0) 

and C. The dependence of Ll and L2 on A1 and A2 is on Fig. 6 for C = 1. 

Conditions Imposed on the Course of (Gll) (x 1) 

The normal behaviour _of (Gll)(x 1) has been defined by inequality (3). From Eq. (6) 
we obtain 

(Gllll) = 2/xi- 2C(1- A1)
3 (x 1 + A1x2t 3

- 6CA;(l - A1)
3 (x 1 + A 1xzt 4 + 

+ 2/x~- 2C(l - A2 )
3 (x2 + A2 x 1t 3 

- 6CA 2(1 - A2 )
3 (x2 + A2 x 1t 4

. 

(20) 

It is shown in Appendix II that condition (3) is always satisfied for C = 1. The course 
of (G11) (x 1) as given by Eq. (4) is always convex for this value of C. The values 
of (Gllll) in unsymmetrical systems at C > 1 become negative in a definite con
centration range, namely for x0 = 0·2 at C > 12; for x0 = 0·15 at C > 1· 33; for 
x0 = 0·1 at C > 1·05. These values should serve only for orientation and they de
pend to a certain extent (very little) on values of ( G 11) (x0). The occurrence of more 
extremes on curves (G11) (x1) is little probable and none were observed in the stud
ied range of x0 , (Gll) (x0) and C. 

CONCLUSIONS 

We have calculated parameters A1 , Az, C in the Wilson three-constant equation, 
which correspond to systems with different values of x0 and (Gll) (x0). Besides that, 
the corresponding values of the limiting activity coefficients have been calculated. 
In contrast to the R- K and NRTL equations, the limiting activity coefficients may 
reach even infinitely large values. This is one of the reasons which brings about 
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good results if this equation is used for homogeneous systems. This favourable 
property is supported by the fact that the equation with values of C ;:;;; 1 cannot 
reproduce the behaviour of systems which are heterogeneous in a certain concentra
tion range. High values of the limiting activity coefficients provided by the R- K 
and NRTL equations lead to splitting into two liquid phases. 

Considerable attention has been paid to the course of ~E(x 1) and o~Efox 1 . The 
analysis has led to the conclusion that curve ~E(x 1 ) can have only two extremes, 
i.e. it can describe an S-shaped course of ~E(x 1) . Only one inflexion point may appear 
on curve ~E(x 1) and this corresponds to an extreme on curves Yi(x 1). A set of para
meters has been found (Fig. 4) which yields an extreme on curves y1(x1) or 
an S-shaped behaviour of ~E(x 1 ). This set has been transformed and sets of limiting 
activity coefficients have been found which correspond to ~E > 0; ~E < 0, an S-sha
ped behaviour of ~E(x 1) or possibly an extreme on curve Yi(x1). At the same time 
it has been found out that at simultaneous occurrence of an extreme on curves y1(x 1) 

are the limiting activity coefficients bounded above by a value of 1·355 without 
being bounded below. It has been proved for the Wilson two-constant equation that 
it always yields a convex course of (Gll) (x1). . 

APPENDIX I 

Let us investigate whether the quadratic equation (1 2) can have two roots on the interval (0, 1). It 
would have to hold in this case 

0 < - p ± .J(p2 - 4o:y) < I . 
2o: 

(A-1) 

As the value of o: is always positive, it may be proved by an analysis of relation (A-I) that it holds 
if and only if the following conditions are satisfied simultaneously: 

1) 
2) 

J) 
4) 
5) 

p
2

- 4o:y :::::: 0} 
2o: + p > 0 
o: + P +y> O 
p < 0 
y > O 

(A-2) 

It may be shown that for A 1 < 1 or A 1 > I are conditions, 4, 5 or 2, 3, respectively, excluded. 

APPENDIX II 

Let us consider at the beginning the first three terms of Eq. (20) 

Let us try to find such composition (at non-negative parameters A1, A 2 , C) at which this ex
pression would be equal to zero. After rearranging we obtain 
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At -t- 4Ai(l- A1) x 1 + 6Afxf(l- A1)
2 + 4A 1(1- A1)

3 xio- C) + 

+ xi(l- A1) 4 (1- C)= 0. (A-4) 

This relation simplifies considerably for C = 1. Eq . (A-4) reduces in this case to (for A 1 > 0) 

(A-5) 

The discriminant of this equation is equal to 

(A-6) 

it is always negative and consequently no real x 1 exists for which would Eq. (A-4) hold and, fol
lowingly, F 1 (xI) can never be equal to zero for C = 1. The same results are obtained after similar 
considerations performed with second three terms of Eq. (19). 

Two further negative terms remain in Eq. (A-4) at C > 1 and F 1 (x 1) may be then not only 
equal to zero but it can also assume negative values, which was in fact observed. 

LIST OF SYMBOLS 

A I, A 2 , C constants in the Wilson equation 
~E molar excess Gibbs free energy 
(Gll) ((Gill), (Gill I)) ·second (third, fourth) derivative of the molar Gibbs free energy with res

pect to composition divided by 2·303RT 
Ll, L2 limiting values of the decadic logarithm of the activity coeficient of the i-th com-

ponent 
(Gll) (x0 ) ordinate of the minimum on the curve (Gil) (x1) 

Q = ~E/(2 · 303RT) dimensionless molar excess Gibbs free energy 
(Ql), (Qil) first, second derivative of Q with respect to composition 
R universal gas constant 
T absolute temperature 

mole fraction of the i-th component 
activity coefficient of the i-th component 
limiting activity coefficient of the i-th component 
parameters in Eq. (12) 

REFERENCES 

1. Redlich 0 ., Kister A. T ., Turnquist C. E.: Chern. Eng. Progr, Symp. Ser. 48, No.2, 49 (1952). 
2. Renon H ., Prausnitz J. M. : A.I.CH .E. J. 14, 135 (1968). 
3. Novak J.P., Suska J., Matous J ., Pick J .: This Journal39, 695 (1974). 
4. Novak J.P., Suska J., Matous J.: This Journal39, 1943 (19 74). 
5. Novak J. P., Suska J ., Matous J.: Sbornik VSCHT, in press. 
6. Wilson G . M .: J . Am. Chern . Soc. 86, 127 (1964). 
7. Scatchard G., Wilson G . M.: J . Am. Chern. Soc. 86, 133 (1964). 
8. Orye R. V., Prausnitz J. M.: Ind. Eng. Chern. 57, 19 (1965). 

Translated by K . Hlavaty. 

sollection czechoslov. Chern . Commun. [Vol. 39] [1974) 




